The Prompt
Is the Product:

Field Lessons in Al-Powered
Modernization - Benchmarking

Claude Code, OpenAl Codex,
and the Human in the Loop



rape up° © Copyright 2026 Grape Up, Inc. All rights reserved.
yrig 9

Table of contents

Introduction: The Velocity of Innovation 4

Chapter 1: The Evolution of Al Coding — From Autocomplete to Agency 5

Phase T: The Era of Prediction 5
Phase 2: The Era of Context 6
Phase 3: The Era of Agency 7
The Broader Ecosystem 7
Chapter 2: The Rise of Autonomous Agents — Initial Field Assessments 8
Assessment Methodology: The Viability Check 8
Gemini: The Analyst o)
Amazon Q Developer: The Enterprise Option 9
Claude Code: The Autonomous Orchestrator 1
Chapter 3: Benchmark Phase | — Independent Program Migration 13
The Benchmark Objective 13
The Benchmark Lineup 13
The Surprise Factor: Evolution of Competence 14
Measurement Methodology: The "Three-Run" Standard 14
Methodology: The 4-Phase Prompt Architecture 15
Round T: The Initial Baseline 16
Claude Code — The Hesitant Expert 16
OpenAl Codex — The Pragmatic Closer 18
G.Tx - The Industrial Efficiency 19
Round 2: The Consistency Check 20
Claude Code — The High Cost of 96% Accuracy 20
OpenAl Codex — The Consistent Operator 21
G.Tx - The Value of Consistency 22
Round 3: The Reality of Variance 24
Claude Code - Over-Engineering and Regression 24
OpenAl Codex — The Friction of Variance 25
G.Tx — The Resilience of Design 26
Chapter 3 Conclusion: The Efficiency vs. Autonomy Trade-off 28

The Prompt is the Product: Field Lessons in Al-Powered Modernization 2




grape upr

© Copyright 2026 Grape Up, Inc. All rights reserved.

Chapter 4: Benchmark Phase Il - The Monolith Challenge 31
The Benchmark Objective: Feasibility at Scale 31
The Environment: The 9.5 Million Tokens 32
Methodology: The External Quality Gate 32
The Variable: Context Engineering 33
Round 1: The Baseline Success with Codex 33
Round 2: The Context Limits 34
Round 3: Handling High Complexity 34
The Control Experiment: The Value of Context 36
Chapter 4 Conclusion: The Prompt Is the Product 37
Chapter 5: The Future of Modernization & Final Verdict 38
The Collapse of the Context Ceiling 38
The End of "Token Rationing" 38
Autonomous Agents vs. Structured Workflows 39
The Rise of Model Agnosticism 39
Final Verdict: The Human in the Loop 40

The Prompt is the Product: Field Lessons in Al-Powered Modernization




grape up’

© Copyright 2026 Grape Up, Inc. All rights reserved.

Chapter 3:

Benchmark Phase | — Independent
Program Migration

Building on our initial summer trials, we moved last month to a more structured, quantitative
phase of testing. The goal shifted from exploring capabilities to benchmarking performance
under controlled conditions.

For this first benchmark, we focused on high-volume, independent script migration. To
understand the current state of the art, we pitted two distinct technological philosophies
against each other: Autonomous Agents vs. Specialized Workflows.

The Benchmark Objective

The specific goal was identical for all participants: rewrite and test a comprehensive suite of
legacy programs from the GitHub public repository cobol-examples. This repository consists
of 26 distinct programs covering the full spectrum of legacy logic, including a mix of simple
I/O, file handling, and database operations.

The Benchmark Lineup

The Prompt is the Product: Field Lessons in Al-Powered Modernization

The Autonomous Agents: Claude Code & OpenAl
Codex

These are the "Black Box" autonomous agents designed to reason through problems in
real-time. We selected Claude Code (returning from our initial assessment) and added
OpenAl Codex to the roster.

We selected these two explicitly because of their undisputed market dominance. At the
moment of writing, these technologies command the largest active user communities and
define the industry conversation regarding Al coding. Given the massive enthusiasm and
widespread adoption surrounding these ecosystems, they were the mandatory candidates
for a serious benchmark. Our goal was to test if the performance matched the reputation.




grape upr

© Copyright 2026 Grape Up, Inc. All rights reserved.

The Specialized Workflow: G.Tx

To provide a comparative standard, we included G.Tx, our proprietary internal tool. Unlike
the generalists, G.Tx is a Workflow Agent. It does not "improvise" a plan; it follows a strict,
pre-defined modernization path (combining deterministic parsing with Generative Al).

The Surprise Factor:
Evolution of Competence

Before analyzing the metrics, one general observation stood out immediately. In our previous
tests, agents would often skip complex tasks or hallucinate completion. In this benchmark,
both tools attempted every single example. Neither tool "lied" about getting things done
while secretly skipping files.

This shifted our measurement strategy. Since 100% "Completion Rate" is now the industry
baseline rather than a differentiator, we excluded it from our final scoring and focused
entirely on quality and consistency.

Measurement Methodology:
The "Three-Run' Standard

The Prompt is the Product: Field Lessons in Al-Powered Modernization

To account for the stochastic nature of Generative Al - where the same prompt can yield
different results - we did not rely on a single pass. We executed the entire benchmark suite
three times for each tool.

This approach allowed us to measure Standard Deviation, giving us insight into the
"‘personality" of the models. We weren't just looking for the best run; we were looking for the
most consistent one.

We evaluated success based on three specific technical metrics:

1. Test Success Rate: The percentage of tests that passed. We tracked the variance between
runs to determine if the tool was reliable or lucky.

2. Code Coverage: This was our critical factor. A high pass rate is meaningless if the tests
only cover 10% of the code. We required the agents to measure their own coverage, exposing
whether they were rigorously testing their logic or just writing "happy path” tests.

3. Duration: We measured the time to completion for the full batch.

Note on Cost: While we tracked token usage, we ultimately decided to exclude Cost as a
primary metric. For modernization batches of this volume, the API costs have become so
marginal that they are no longer a significant decision factor for enterprise projects.




grape up’

© Copyright 2026 Grape Up, Inc. All rights reserved.

The Manual Spot-Check Protocol

Crucially, we didnotrely solely on the agents'self-reported test results. To ensure the migration
was genuine and not a hallucination of passing tests, we performed a manual code review
and execution on three "Control Programs" after every single run:

- Hello World: Verified basic syntax and compilation.
- Read File: Verified file I/O operations and directory path handling.

- Database Select: Verified external dependency handling, and data retrieval.

This human review provided the "ground truth" confidence level, ensuring that high pass rates
corresponded to actual, runnable code.

Methodology:

4-Phase Prompt Architecture

To eliminate variables and ensure a fair comparison, we designed a strict 4-Phase Prompt
Architecture. This was not a free-form conversation; we acted as the "Modernization Expert,"
feeding the agents precise, role-based instructions. The agents were required to maintain
state by writing to a markdown file on the file system, tracking their own progress from
analysis to verification.

Phase 1: Planning and Tracking

We did not simply ask the agents to "convert code." We required them to first act as auditors.
The agent had to scan the directory, identify every .cob script and .cpy copybook, and
map their dependencies. Crucially, they were required to generate a conversion matrix - a
markdown table tracking the status of every file. This forced the model to acknowledge the
scope before writing a single line of Python.

Phase 2: Strict Implementation Standards

The conversion phase had strict rules. We required modern Python standards (version 3.11+).
We also included a conditional directive regarding environment: "Only use Docker if externall
dependencies are required." This instruction acted as a specific hint, explicitly authorizing
the agent to spin up a Docker environment if - and only if - it detected a valid external
dependency like a database.

Phase 3: Automated Test Generation

We mandated a strict verification protocol: for every new Python script created, the agent
was required to generate a corresponding test file. The goal was to ensure that the generated
code was functional and internally consistent. By forcing the agent to write passing tests for
its own work, we filtered out code that looked syntactically correct but failed to execute.

The Prompt is the Product: Field Lessons in Al-Powered Modernization 15



grdpe \4|p® © Copyright 2026 Grape Up, Inc. All rights reserved.

Phase 4: Truth Serum Verification

Finally, the agent was required to run the tests itself and generate a verification report. This
report had to list total tests, pass/fail counts, and coverage percentages. This phase allowed
us to compare what the agent claimed happened versus the actual terminal output.

Note on G.Tx Workflow Alignment

While Claude Code and OpenAl Codex received these instructions as conversational
prompts, G.Tx executed these exact requirements through a designed workflow.

[}
-
v
>

> ¢ 0 &5

or
B
El
®
A
kd
-]
-
=
E
L
-
L]
[
»

G.Txis aflexible process orchestration engine that allows us to model any modernization path.
For this benchmark, we configured a specific workflow model that mirrored the exact logic
of the 4-Phase Prompt Architecture. This ensured that while the execution method differed
(autonomous reasoning vs. structured workflow), the steps, rules, and success criteria were
identical.

Round 1I: The Initial Baseline
Claude Code — The Hesitant Expert

We executed this 4-phase strategy with Claude Code using the exact prompts described
above. While the tool displayed high intelligence, its behavior revealed a personality trait
best described as "hesitant compliance.”

The Prompt is the Product: Field Lessons in Al-Powered Modernization 16




Uncover the
Truth About Al
Modernization.

Get the full guide ©

grape up
Breaking the linear


https://grapeup.com/insight/
the-prompt-is-the-product-field-lessons-in-ai-powered-modernization



